高级检索

基于物联网与机器视觉技术的排水工程建设过程安全行为与环境风险识别应用

Application of IoT and Machine Vision Technology in Safety Behavior and Environmental Risk Identification during the Construction Process of Drainage Engineering

  • 摘要: 排水工程建设管理中普遍存在传统人工监管不足、施工安全隐患多等问题,为强化排水工程的管理效能,本研究基于物联网与机器视觉技术,构建了适用于排水工程建设的智慧化管理平台,实现对施工现场的全面感知和数据采集、智能分析与科学决策。通过大量图像样本库的训练和测试,基于改进YOLOv5算法的施工人员穿戴检测模型有效解决了施工现场环境复杂、人员姿态多样带来的安全防护装备检测难题。此外,基于改进Mask R-CNN算法的火焰与烟雾检测模型提高了早期火灾风险隐患识别的精度。结果表明,模型对各类目标的识别回归率达到85%以上,能够有效实现对人员行为和现场安全风险进行识别监管。物联网与机器视觉技术的相互融合赋予排水工程建设智慧化管理实时数据更新与动态监管能力,为施工管理决策提供科学支持,并有效提升了资源配置效率及安全管控水平。

     

    Abstract: Traditional manual supervision in drainage engineering construction management often suffers from insufficient oversight and overlooked safety risks. To enhance management efficacy, this study develops an intelligent management platform integrating IoT and computer vision technologies, enabling comprehensive site perception, data acquisition, intelligent analysis, and scientific decision-making. Trained and tested on a large - scale image library, an improved YOLOv5-based algorithm for personal protective equipment detection addresses safety gear identification challenges in complex construction environments and diverse worker postures. Besides, precise early-stage fire hazard recognitions are achieved by an improved flame and smoke detection Mask R-CNN algorithm. Experimental results demonstrate over 85% mean average precision in target recognition, effectively enabling behavior monitoring and risk identification. The convergence of IoT and computer vision technologies empowers the platform with real-time data synchronization and dynamic supervision capabilities, providing data-driven decision support that significantly improves resource allocation efficiency and safety management performance. This technological integration establishes a novel paradigm for intelligent infrastructure management, demonstrating practical value in modernizing construction supervision systems.

     

/

返回文章
返回